Abstract
While quantum machine learning (ML) has been proposed to be one of the most promising applications of quantum computing, how to build quantum ML models that outperform classical ML remains a major open question. Here, we demonstrate a Bayesian algorithm for constructing quantum kernels for support vector machines that adapts quantum gate sequences to data. The algorithm increases the complexity of quantum circuits incrementally by appending quantum gates selected with Bayesian information criterion as circuit selection metric and Bayesian optimization of the parameters of the locally optimal quantum circuits identified. The performance of the resulting quantum models for the classification problems considered here significantly exceeds that of optimized classical models with conventional kernels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.