Abstract
AbstractThis article develops an ontological description of land use and applies it to incorporate geospatial information describing land coverage into a knowledge-graph-based Universal Digital Twin. Sources of data relating to land use in the UK have been surveyed. The Crop Map of England (CROME) is produced annually by the UK Government and was identified as a valuable source of open data. Formal ontologies to represent land use and the geospatial data arising from such surveys have been developed. The ontologies have been deployed using a high-performance graph database. A customized vocabulary was developed to extend the geospatial capabilities of the graph database to support the CROME data. The integration of the CROME data into the Universal Digital Twin is demonstrated in two use cases that show the potential of the Universal Digital Twin to share data across sectors. The first use case combines data about land use with a geospatial analysis of scenarios for energy provision. The second illustrates how the Universal Digital Twin could use the land use data to support the cross-domain analysis of flood risk. Opportunities for the extension and enrichment of the ontologies, and further development of the Universal Digital Twin are discussed.
Highlights
The population of the world is projected to increase to 9.7 billion by 2050, rising to a peak of 11 billion in 2100 (United Nations, 2019)
We extend a web-based digital twin to combine a geospatial description of crop growth and data about biomass energy content and yield, with a description of the energy supply system in the UK
The purpose of this article is to create an ontological description of land use, and to apply the ontologies to provide a geospatial description of the land use in England as part of a knowledge-graphbased Universal Digital Twin
Summary
The population of the world is projected to increase to 9.7 billion by 2050, rising to a peak of 11 billion in 2100 (United Nations, 2019). This will lead to land use change as more people migrate to cities in search. In December 2015 in Paris, 197 countries pledged to aggressively curb their greenhouse gas emissions and work together to limit the increase in global temperature to 2°C by the end of the 21st century (United Nations, 2021). The dynamic knowledge graph combines an ontological description of the concepts and instances (i.e., data) that are known to the world model with automated computational agents that operate on the knowledge graph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.