Abstract

This study assesses the value of enhanced spatial resolution in the agriculture and land use component of an integrated assessment (IA) model. IA models typically represent land use decisions at finer resolution than the energy and economic components, to account for spatial heterogeneity of land productivity and use. However, increasing spatial resolution incurs costs, from additional input data processing, run time, and complexity of results. This study uses the Global Change Assessment Model (GCAM) to analyze land use in the Midwestern United States in three levels of spatial aggregation, and three climate change mitigation scenarios. For visualization and simplification of higher resolution model output, we use non-metric multidimensional scaling. We find that the level of spatial aggregation influences the magnitude but not the direction of land use change in response to the modeled drivers, and in the examples analyzed, increasing spatial resolution reduces the extent of land use change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.