Abstract

Objective measurement of gaze pattern and eye movement during untethered activity has important applications for neuroscience research and neurological disease detection. Current commercial eye-tracking tools rely on desk-top devices with infrared emitters and conventional frame-based cameras. Although wearable options do exist, the large power-consumption from their conventional cameras limit true long-term mobile usage. The query-driven Dynamic Vision Sensor (qDVS) is a neuromorphic camera which dramatically reduces power consumption by outputting only intensity-change threshold events, as opposed to full frames of intensity data. However, such hardware has not yet been implemented for on-body eye-tracking, but the feasibility can be demonstrated using a mathematical simulator to evaluate the eye-tracking ca-pabilities of the qDVS under controlled conditions. Specifically, a framework utilizing a realistic human eye model in the 3D graphics engine, Unity, is presented to enable the controlled and direct comparison of image-based gaze tracking methods. Eye-tracking based on qDVS frames was compared against two different conventional frame eye-tracking methods - the traditional ellipse pupil-fitting algorithm and a deep learning neural network inference model. Gaze accuracy from qDVS frames achieved an average of 93.2% for movement along the primary horizontal axis (pitch angle) and 93.1 % for movement along the primary vertical axis (yaw angle) under 4 different illumination conditions, demonstrating the feasibility for using qDVS hardware cameras for such applications. The quantitative framework for the direct comparison of eye tracking algorithms presented here is made open-source and can be extended to include other eye parameters, such as pupil dilation, reflection, motion artifact, and more.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.