Abstract
AbstractLarge‐scale integration of renewable energy into the power grid results in a lack of system inertia, posing challenges to the optimal operation and scheduling of systems considering frequency stability. This article proposes a unit commitment model that considers both inertia constraints and the uncertainty of load and renewable energy. First, the time‐domain expression of the system frequency response is calculated based on the aggregated System Frequency Response (SFR) model, considering the system's maximum frequency deviation and the maximum Rate of Change of Frequency (RoCoF) limit. This calculation determines the minimum inertia requirement for the system. Furthermore, inertia constraints suitable for mixed‐integer programming model are derived to address the nonlinearity of conventional frequency constraints. Second, considering the uncertainties of load and wind energy from renewable sources, a unit commitment model with inertia constraints is constructed, and a robust method is used to solve the uncertainties. Finally, the accuracy of the proposed inertia constraints and unit commitment model is validated using case study of IEEE standard test cases and a provincial power grid in China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.