Abstract
The wet bulb temperature (Tw) has gained considerable attention as a crucial indicator of heat-related health risks. Here we report south-to-north spatially heterogeneous trends of Tw in China over 1979-2018. We find that actual water vapor pressure (Ea) changes play a dominant role in determining the different trend of Tw in southern and northern China, which is attributed to the faster warming of high-latitude regions of East Asia as a response to climate change. This warming effect regulates large-scale atmospheric features and leads to extended impacts of the South Asia high (SAH) and the western Pacific subtropical high (WPSH) over southern China and to suppressed moisture transport. Attribution analysis using climate model simulations confirms these findings. We further find that the entire eastern China, that accommodates 94% of the country’s population, is likely to experience widespread and uniform elevated thermal stress the end of this century. Our findings highlight the necessity for development of adaptation measures in eastern China to avoid adverse impacts of heat stress, suggesting similar implications for other regions as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.