Abstract

In this paper, we consider the vanishing viscosity limit for the incompressible non-resistive magneto-micropolar equations on the half-space with no-slip boundary condition (3). We prove that the vanishing viscosity limit is uniform over a time interval, which indicates that the incompressible non-resistive magneto-micropolar equations with the no-slip boundary condition have a strong solution and the solution is uniformly bounded in both the conormal Sobolev norm and norm. As a direct result, we obtain the vanishing viscosity limit for the incompressible non-resistive magneto-micropolar equations by a strong compactness argument.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.