Abstract

In this paper, we are concerned with the uniform regularity and zero dissipation limit of solutions to the initial boundary value problem of 3D incompressible magnetic Bénard equations in the half space, where the velocity field satisfies the no-slip boundary conditions, the magnetic field satisfies the perfect conducting boundary conditions, and the temperature satisfies either the zero Neumann or zero Dirichlet boundary condition. With the assumption that the magnetic field is transverse to the boundary, we establish the uniform regularity energy estimates of solutions as both viscosity and magnetic diffusion coefficients go to zero, which means there is no strong boundary layer under the no-slip boundary condition even the energy equation is included. Then the zero dissipation limit of solutions for this problem can be regarded as a direct consequence of these uniform regularity estimates by some compactness arguments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.