Abstract

The inspection of wellbore casings has been extensively investigated owing to the increasing concern for safety in oil and gas production. However, efficient techniques for inspecting asymmetry defects have not been achieved. In this study, we developed a uniform circular array (UCA) to address the problem of borehole pulsed eddy current (PEC) techniques for asymmetry defect inspection in downhole casings. Based on the borehole PEC system model, the UCA developed with multiple independent probes was designed to achieve asymmetry defect inspection, and the three-dimensional magnetic field data of borehole depths, circumferential azimuths, and sampling times could be obtained. Furthermore, a multichannel data acquisition circuit, which guarantees downhole operation at 150 °C, was developed for the synthesized UCA. Using azimuth dimension information from the synthesized UCA at a certain borehole depth, we obtained an inspection approach for the width and penetration depth of asymmetry defects in the circumferential and radial directions, respectively. Simulations and field experiments were conducted, and the results demonstrate the effectiveness of the proposed method in inspecting asymmetry defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.