Abstract

A finite element simulation for defect depth estimation using the pulsed eddy current (PEC) technique is presented in this paper. In this work, we investigate PEC inspection on defect with different depths, through the transient magnetic flux density profile from eddy current and defect interaction in a stainless steel sample. The investigation is implemented via time-stepping finite element method (FEM) modelled in 3D using COMSOL. The estimation of defect depth was made possible by the peak amplitude feature of the differential magnetic flux density profile acquired by the PEC coil. The underlying phenomena of the acquired results is then observed and discussed through the visualisation of the resultant eddy current density for different defect depths obtained from the simulation. The simulation results indicate the potential of detection and quantitative evaluation of defect using the PEC technique. It is expected the investigation will help in the future work of PEC in terms of sensor development and inversion models for defect characterisation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.