Abstract

PurposeThis paper aims to propose a new unified and non-ideal switch model for analysis of switching circuits.Design/methodology/approachThe model has a single unified structure that includes all possible states (on, off) of the switches. The analysis with the proposed switch model requires only one topology and uses the single system equation regardless of states of switches. Moreover, to improve accuracy, the model contains the on-state resistance and capacitive effect of switches. The system equations and the states of switches are updated by control variables, used in the model.FindingsThere are no restrictions on circuit topology and switch connections. Switches can be internally and externally controlled. The non-ideal nature of the model allows the switch to be modeled more realistically and eliminates the drawbacks of the ideal switch concept. After modeling with the proposed switch model, a linear circuit is obtained. Two examples related to switching circuits are included into the study. The results confirm the accuracy of the model.Originality/valueThis paper contributes a different switch model for analysis of switching converters to the literature. The main advantage of the model is that it has a unified and non-ideal property. With the proposed switch model, the transient events, like voltage spikes and high-frequency noises, caused by inductor and capacitor elements at switching instants can be observed properly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call