Abstract

Regulating secondary metabolite (SM) in Myxococcus xanthus bears the potential to influence the formation of important natural products with various biological activities. The authors of this study have previously found that the detectable levels of two proteins (4-hydroxyphenylpyruvate dioxygenase [HppD] and a Hsp90-like protein [HtpG]) are affected by ROK inactivation. As evidence, the current study was designed to elucidate the possible role of these two proteins in regulating the SMs' biosynthesis in this bacterium. To begin with, inactivation of the corresponding genes was carried out, and two mutant strains (M. xanthus hppD- and htpG-) were constructed. Subsequently, high-performance liquid chromatography coupled with mass spectrometry analysis for the metabolic extracts of the mutants revealed a significant reduction in the production of several SMs, like DKxanthene, myxalamide A, and myxochromide A, in comparison to the wild type. Furthermore, electrophoretic mobility shift assays using purified ROK protein suggested a direct binding on the genes' promoter region encoding the two proteins under study. It is therefore possible to conclude that hppD and htpG genes are implicated in the bacterium SMs' biosynthetic regulatory cascade, which seems to be directly regulated by the ROK protein. The present study provides additional evidence to a previous investigation showing the pleiotropic regulatory role of ROK on the production of SMs in M. xanthus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.