Abstract
The underwater electric field signal can be excited by underwater vehicles, such as the shaft-rate electric field and the corrosion electric field. The electric field signature of each vehicle exhibits significant differences in time and frequency domain, which can be exploited to determine target positions. In this paper, a novel passive localization method for underwater targets is presented, leveraging a uniform linear electrode array (ULEA). The ULEA manifold along the axial direction is derived from the electric field propagation in an infinite lossy medium, which provides the nonlinear mapping relationship between the target position and the voltage data acquired by the ULEA. In order to locate the targets, the multiple signal classification (MUSIC) algorithm is applied. Then, capitalizing on the rotational invariance of matrix operations and exploiting the symmetry inherent in the ULEA, we streamline the six-dimensional spatial spectral scanning onto a two-dimensional plane, providing azimuth and distance information for the targets. This method significantly reduces computational overhead. To validate the efficacy of our proposed method, we devise a localization system and conduct a simulation environment to estimate targets. Results show that our method achieves satisfactory direction and reliable distance estimations, even in scenarios with low signal-to-noise ratios.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have