Abstract

AbstractTransition metal‐catalyzed amide C−N bond activation has emerged as a powerful strategy to utilize amides in synthetic transformations. The key mechanistic basis for the rational design of amide reagents is the structure‐activity relationship of amide C−N bond activation. In this work, the controlling factors of Ni/PCy3‐catalyzed amide C−N bond activation barrier are elucidated with density functional theory (DFT) calculations and distortion/interaction analysis. We found that the substrate distortion is the key factor that differentiates the amide reactivity in the C−N bond activation. The substrate distortion of amide is associated with two distinctive structure‐activity relationships. The general planar amides undergo a classic three‐membered ring oxidative addition to cleave the C−N bond, in which the C−N heterolytic bond dissociation energy has a linear relationship with the activation barrier. The twisted amides have a chelation‐assisted transition state for the amide C−N bond cleavage, and the twisted angle τ can serve as a predictive parameter for the reactivity of the twisted amides. The understanding of the structure‐activity relationship of amide C−N bond activation provides a rational and predictive basis for future reaction designs involving transition metal‐catalyzed amide C−N bond activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.