Abstract

We investigate the correlations between the redox potentials of nonalkylated cobalt corrinoids and the Co-C bond dissociation energies (BDEs) of the methylated species with an aqua or histidine axial ligand. A set of cobalt corrinoids, cobalamin, and its model systems, which include new version of myoglobin reconstituted with cobalt didehydrocorrin, are investigated. The Co(III)/Co(II) and Co(II)/Co(I) redox potentials of myoglobin reconstituted with cobalt tetradehydrocorrin and didehydrocorrin and the bare cofactors were determined. Density functional theory (DFT) calculations were performed to estimate the Co-C BDEs of the methylated species. It is found that the redox potentials correlate well with the heterolytic BDEs, which are dependent on the electronegativity of the corrinoid frameworks. The present study offers two important insights into our understanding of how enzymes promote the reactions: (i) homolysis is promoted by strong axial ligation and (ii) heterolysis is controlled by the redox potentials, which are regulated by the saturated framework and axial ligation in the enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.