Abstract

The Sb2Te3 phase change material shows a growth-dominated crystallization mechanism with fast phase transition but poor thermal stability of the amorphous state. This work investigated the effects of carbon doping on the thermal stability, microstructure, and electrical properties of the Sb2Te3 material. The 10-year data retention temperature of the material increased to ∼147.3 °C and the size of the grains was limited to ∼10 nm by carbon doping. The formation of the C cluster upon crystallization was found at the grain boundaries, which was accelerated as the temperature increased due to the break of the Sb–C bonds. The memory device based on the carbon-doped Sb2Te3 material exhibited a switching speed of 15 ns and an endurance of ∼105 cycles with a resistance ratio of more than two orders of magnitude. This work suggests that the carbon-doped Sb2Te3 material is a promising candidate for memory applications that require high thermal stability, fast speed, and high endurance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.