Abstract
Reentrance, the return of a system from an ordered phase to a previously encountered less-ordered one as a controlled parameter is continuously varied, is a recurring theme found in disparate physical systems, yet its microscopic cause is often not investigated thoroughly. Here, through detailed characterization and theoretical modeling, we uncover the microscopic mechanism behind reentrance in the strongly frustrated pyrochlore antiferromagnet Er_{2}Sn_{2}O_{7}. We use single crystal heat capacity measurements to expose that Er_{2}Sn_{2}O_{7} exhibits multiple instances of reentrance in its magnetic field B vs temperature T phase diagram for magnetic fields along three cubic high symmetry directions. Through classical MonteCarlo simulations, mean field theory, and classical linear spin-wave expansions, we argue that the origins of the multiple occurrences of reentrance observed in Er_{2}Sn_{2}O_{7} are linked to soft modes. These soft modes arise from phase competition and enhance thermal fluctuations that entropically stabilize a specific ordered phase, resulting in an increased transition temperature for certain field values and thus the reentrant behavior. Our work represents a detailed examination into the mechanisms responsible for reentrance in a frustrated magnet and may serve as a template for the interpretation of reentrant phenomena in other physical systems.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have