Abstract

This work concerns the physical mechanisms of metal n-doping in charge transport layers for optoelectronic devices, for which the doping level is constrained by transparency requirements so as to avoid parasitic absorption. Comparing various metal dopants, we claim that enhanced conductivity at low doping is initiated by the electrical doping effect, namely, metal-semiconductor charge donation. Electrical measurements show that doping effects at low concentration strongly depend on the work function of the introduced metal, and not every metal works as an efficient dopant. Practical applicability is demonstrated by introducing doped transport layers in prototypical bilayer solar cells in conventional and inverted architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.