Abstract
Two-dimensional (2D) materials such as graphene and transition metal chalcogenides (MX2, M: transition metal, X: S, Se, Te) have emerged as a new class of materials due to their high carrier mobility, high transparency, tunable band gap, low cost, and solution-processable properties. These materials can be fabricated into single layers or few layers through facile processes such as chemical vapor deposition or mechanical exfoliation to unlock their superior electrical and optical properties. The ability to tune the work function enables their application as hole transport layers and electron transport layers in optoelectronic devices. In this review, we focus on recent progress in the application of 2D materials as hole transport layers and electron transport layers in organic solar cells and perovskite solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.