Abstract

The insertion layer in the ferroelectric multilayer junctions plays a key role in regulating the energy band structure of interface and their resistive switching behavior. Here, PbZr0.52Ti0.48O3/La0.67Sr0.33MnO3/Nb:SrTiO3 (PZT/LSMO/NSTO) heterostructures with different LSMO thicknesses were prepared by pulsed laser deposition and their ferroelectric properties and resistive switching behaviors were investigated. It is found that the ferroelectric properties of the heterostructures almost do not change with the increasing in the thickness of LSMO, while the resistive switching behaviors are closely related to the LSMO thickness, and the maximum switching ratio of about 103 can be achieved in the PZT/LSMO/NSTO heterostructure with the LSMO thickness of 18 nm. By analyzing the I-V curves and energy band structures, it can be concluded that the resistive switching behaviors depend on the competition between the tunability of depletion layer width and the ability of ferroelectric filed effect. These results provide insights to understand ferroelectric resistive switching in ferroelectric heterostructures, and demonstrate an effective way to improve resistive switching performance by adjusting the band structure through the appropriate thickness of the insertion layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call