Abstract

Gold nanoclusters have attracted significant attention due to their unique physical-chemical properties, which can be tuned by alloying with elements such as Cu, Pd, Ag, and Pt to design materials for various applications. Although Au-nanoalloys have promising applications, our atomistic understanding of the descriptors that drive their stability is far from satisfactory. To address this problem, we considered 55-atom model nanoalloys that have been synthesized by experimental techniques. Here, we combined data mining techniques for creating a large sample of representative configurations, density functional theory for performing total energy optimizations, and Spearman correlation analyses to identify the most important descriptors. Among our results, we have identified trends in core-shell formation in the AuCu and AuPd systems and an onion-like design in the AuAg system, characterized by the aggregation of gold atoms on nanocluster surfaces. These features are explained by Au's surface energy, packing efficiency, and charge transfer mechanisms, which are enhanced by the alloys' preference for adopting the structure of the alloying metal rather than the low-symmetry one presented by Au55. These generalizations provide insights into the interplay between electronic and structural properties in gold nanoalloys, contributing to the understanding of their stabilization mechanisms and potential applications in various fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.