Abstract

The MPSDynamics.jl package provides an easy-to-use interface for performing open quantum systems simulations at zero and finite temperatures. The package has been developed with the aim of studying non-Markovian open system dynamics using the state-of-the-art numerically exact Thermalized-Time Evolving Density operator with Orthonormal Polynomials Algorithm based on environment chain mapping. The simulations rely on a tensor network representation of the quantum states as matrix product states (MPS) and tree tensor network states. Written in the Julia programming language, MPSDynamics.jl is a versatile open-source package providing a choice of several variants of the Time-Dependent Variational Principle method for time evolution (including novel bond-adaptive one-site algorithms). The package also provides strong support for the measurement of single and multi-site observables, as well as the storing and logging of data, which makes it a useful tool for the study of many-body physics. It currently handles long-range interactions, time-dependent Hamiltonians, multiple environments, bosonic and fermionic environments, and joint system-environment observables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.