Abstract

Enrichment of ionic poly/perfluoroalkyl substances (PFASs) in aqueous aerosol (AA) is an important pathway for them to enter atmosphere. In this study, the enrichment behaviors of 12 legacy and emerging PFASs in AA in both single solute and mixed solutions were investigated. The enrichment factors (EF) displayed a general increasing trend with the fluorinated carbon chain length. For the first time, a robust Quantitative Structure-Property Relationship (QSPR) model coupled with partial least-square method was established with fifteen quantum chemical descriptors. Four molecular descriptors, including dipole moment (μ), molecular weight (MW), the maximal value of the molecular surface potential (Vs, max) and molecular volume (V) were identified as the key structural variables affecting the PFASs enrichment. Inorganic salts and humic acid (HA) which are common in seawater, facilitated the PFASs enrichment as a result of enhanced hydrophobicity and the bridging effect caused by divalent cations. The typical cationic and anionic surfactants, cetyltrimethylammonium bromide and sodium dodecyl sulfate, both inhibited the enrichment due to the competition between PFASs and surfactants. It is interesting that 6:2 chlorinated polyfluorinated ether sulfonate (F53B) had the highest EF among the 12 PFASs, implying its strong potential of atmosphere transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call