Abstract
Efficient nucleotide import is critical to fuel the reverse DNA synthesis that takes place within the HIV-1 capsid. However, the mechanism by which the HIV-1 capsid imports nucleotides is presently unclear. In this work, we carry out a series of Brownian diffusion simulations to elucidate the nucleotide import process through the hexamer pores of the HIV-1 capsid. Our simulations reveal a significant role of the electrostatic field in the import process and the mechanism by which deoxynucleoside triphosphates (dNTPs) diffuse through the arginine ring: specifically, how IP6s and ATPs, though competing with dNTPs for binding at the pore of the arginine ring, end up accelerating the dNTP import rate by thousands of folds so that it is sufficiently high to fuel the encapsidated DNA synthesis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have