Abstract

Cisplatin is among the most important chemotherapeutic agents ever developed. However, more than a generation after its clinical introduction, its exact mechanism of action on tumor cells is not fully defined. The aim of this study was to investigate the role of oxidative stress as a mediator of cisplatin action on colon cancer cells, studying the influence of mitochondrial physiology and composition on its effectiveness. The chemosensitivity shown by cancer cells to mechanistically dissimilar antitumor drugs is shown to be associated with their capacity to induce early alterations in mitochondrial and redox metabolism. Specifically, cisplatin exerted a marked pro-oxidative action on mitochondria by inhibiting resting respiration and stimulating the immediate generation of ROS in isolated mitochondria. Antioxidants and mitochondrial uncouplers counteracted cisplatin-induced cytotoxicity in tumor cells, reflecting that oxidative stress and the inhibition of mitochondrial uncoupling are relevant to its antiproliferative activity. Additionally, inhibition of uncoupling protein-2 (UCP2) caused cytotoxicity in colon cancer cells via ROS of mitochondrial origin. In conclusion, we show for the first time that UCP2 knockdown participates in the mechanism of action of cisplatin, thus providing evidence that targeting UCP2 may offer clinical benefit in the treatment of cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.