Abstract

There is a growing interest in using extracellular vesicles (EVs) for therapeutic applications. EVs are composed of cytoplasmic proteins and nucleic acids and an external lipid bilayer containing transmembrane proteins on their surfaces. EVs can alter the state of the target cells by interacting with the receptor ligand of the target cell or by being internalised by the target cell. Blood cells are the primary source of EVs, and 1 μL of plasma contains approximately 1.5 × 107 EVs. Owing to their easy acquisition and the avoidance of cell amplification in vitro, using blood cells as a source of therapeutic EVs has promising clinical application prospects. This review summarises the characteristics and biological functions of EVs derived from different blood cell types (platelets, erythrocytes, and leukocytes) and analyses the prospects and challenges of using them for clinical therapeutic applications. In summary, blood cell-derived EVs can regulate different cell types such as immune cells (macrophages, T cells, and dendritic cells), stem cells, and somatic cells, and play a role in intercellular communication, immune regulation, and cell proliferation. Overall, blood cell-derived EVs have the potential for use in vascular diseases, inflammatory diseases, degenerative diseases, and injuries. To promote the clinical translation of blood cell-derived EVs, researchers need to perform further studies on EVs in terms of scalable and reproducible isolation technology, quality control, safety, stability and storage, regulatory issues, cost-effectiveness, and long-term efficacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.