Abstract

Ferroptosis is a form of iron-dependent cell death that has attracted significant attention for its potential role in numerous diseases. Targeted inhibition of ferroptosis could be of potential use in treating diseases: such as drug induced liver injury (DILI). Ferroptosis can be antagonized by the xCT/GSH/GPX4, FSP1/CoQ10, DHODH/CoQ10, GCH1/BH4, and NRF2 pathways. Identifying novel anti-ferroptosis pathways will further promote our understanding of the biological nature of ferroptosis and help discover new drugs targeting ferroptosis related human diseases. In this study, we identified the clinically used drug mifepristone (RU486) as a novel ferroptosis inhibitor. Mechanistically, RU486 inhibits ferroptosis by inducing GSH synthesis pathway, which supplies GSH for glutathione-S-transferase (GST) mediated 4-HNE detoxification. Furthermore, RU486 induced RLIP76 and MRP1 export 4-HNE conjugate contributes to its anti-ferroptosis activity. Interestingly, RU486 induced GSH/GSTs/RLIP76&MRP1 anti-ferroptosis pathway acts independent of classic anti-ferroptosis systems: including xCT/GSH/GPX4, FSP1, DHODH, GCH1, SCD1 and FTH1. Moreover, NRF2 was identified to be important for RU486’s anti-ferroptosis activity by inducing downstream gene expression. Importantly, in mouse model, RU486 showed strong protection effect on acetaminophen (APAP)-induced acute liver injury, evidenced by decreased ALT, AST level and histological recovery after APAP treatment. Interestingly, RU486 also decreased oxidative markers, including 4-HNE and MDA, and induced NRF2 activation as well as GSTs, MRP1 expression. Together, these data suggest NRF2/GSH/GST/RLIP76&MRP1 mediated detoxification pathway as an important independent anti-ferroptosis pathway act both in vitro and in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.