Abstract

Although discovered many decades ago, superconductivity in doped SrTiO_{3} remains a topic of intense research. Recent experiments revealed that, upon increasing the carrier concentration, multiple bands cross the Fermi level, signaling the onset of Lifshitz transitions. Interestingly, T_{c} was observed to be suppressed across the Lifshitz transition of oxygen-deficient SrTiO_{3}; a similar behavior was also observed in gated LaAlO_{3}/SrTiO_{3} interfaces. Such a behavior is difficult to explain in the clean theory of two-band superconductivity, as the additional electronic states provided by the second band should enhance T_{c}. Here, we show that this unexpected behavior can be explained by the strong pair-breaking effect promoted by disorder, which takes place if the interband pairing interaction is subleading and repulsive. A consequence of this scenario is that, upon moving away from the Lifshitz transition, the two-band superconducting state changes from opposite-sign gaps to same-sign gaps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.