Abstract

Pumpkin is considered a functional food with beneficial effects on human health due to the presence of interesting bioactives. In this research, the impact of unconventional ultrasound-assisted extraction (UAE) and microwave-assisted extraction techniques on the recovery of total non-polar carotenoids from Cucurbita moschata pulp was investigated. A binary (hexane:isopropanol, 60:40 v/v) and a ternary (hexane:acetone:ethanol, 50:25:25 v/v/v) mixture were tested. The extracts were characterized for their antioxidant properties by in vitro assays, while the carotenoid profiling was determined by high-performance liquid chromatography coupled with a diode array detector. UAE with the binary mixture (30 min, 45 °C) was the most successful extracting technique, taking into consideration all analytical data and their correlations. In parallel, solid lipid nanoparticles (SLN) were optimized for the encapsulation of the extract, using β-carotene as a reference compound. SLN, loaded with up to 1% β-carotene, had dimensions (~350 nm) compatible with increased intestinal absorption. Additionally, the ABTS ((2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assay showed that the technological process did not change the antioxidant capacity of β-carotene. These SLN will be used to load an even higher percentage of the extract without affecting their dimensions due to its liquid nature and higher miscibility with the lipid with respect to the solid β-carotene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.