Abstract
The study focuses on the synthesis of Fe3O4@SiO2-NH2-Au heterostructures with magneto-plasmonic properties composed of well-defined cubic Fe3O4 cores (79 nm) covered with 10 nm silica shell and gold nanoparticles (8 nm) fabricated on silica shell. The surface-anchored MHDA (16-mercaptohexadecanoic acid) linker facilitated cellulase bioconjugation, which was confirmed through Raman spectroscopy. The presence of gold nanoparticle islands on the heterostructure enabled surface-enhanced Raman scattering (SERS), demonstrating the potential for bioactive substance identification. Immobilization of cellulase allowed for pH enhancement and enzyme thermal stability. The optimal pH shifted from 4.0 (free enzyme) to 6.0 while thermal stability increased by 20 °C. The immobilized cellulase kept its 49% activity after five hydrolysis cycles, compared to significantly lower activity for free cellulase. The proposed heterostructures for cellulase immobilization demonstrate potential for practical applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have