Abstract

This paper examines the uncertainty of greenhouse gas (GHG) emissions during monorail construction. Firstly, a deterministic analysis is conducted. Subsequently, the obtained data are evaluated using the data quality indicator (DQI), and a Markov chain Monte Carlo (MCMC) simulation method is employed to assume different parameter distributions. The results of the deterministic calculation indicate that the calculated emissions per unit area of the station amount to 1.97 ton CO2e/m2, while the calculated emissions per unit section length reach 7.55 ton CO2e/m2. To simulate parameter distribution, we utilize a Beta distribution with good shape applicability. Furthermore, we establish scenarios involving system boundary reduction, low-emission factors, and reduced material and energy inputs in order to analyze scenario uncertainties. Regarding model uncertainty, this paper assumes that the material and energy quantity data conform to the normal, log-normal, uniform, and triangular distributions, respectively, subsequently analyzing the uncertainty distributions. This paper analyzes the GHG emission uncertainty evaluation of 16 monorail stations and sections during the construction period, which is divided into parameter, scenario, and model uncertainty. We provide a concrete framework for studying uncertainties related to GHG emissions at stations and sections during the monorail construction period. The scenario analysis results will help to make decisions about the choice of parameters, system boundaries, and other settings. It provides new guidance for emission reduction policies, such as reducing the use of steel-related products or using alternative environmentally friendly materials, considering emission reduction factors more comprehensively and setting emission reduction factors according to uniform distribution principle as far as possible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call