Abstract

Groundwater plays a pivotal role in the water resources of Shicheng County; however, the issue of excessive fluoride content in groundwater and its associated health risks often goes unnoticed. Groundwater assumes a crucial role in the hydrological dynamics of Shicheng County; nevertheless, the matter concerning elevated levels of fluoride within groundwater and its accompanying health hazards frequently evades attention. The hydrogeochemical analysis, obscure comprehensive water quality assessment based on cloud model, and probabilistic human health risk assessment using Monte Carlo simulation were conducted on 34 collected water samples. The findings indicate that the predominant groundwater hydrochemical types are SO4·Cl-Na and HCO3-Na. The processes of rock weathering and cation exchange play crucial roles in influencing water chemistry. Groundwater samples generally exhibit elevated concentrations of F-, surpassing the drinking water standard, primarily attributed to mineral dissolution. The concentrations of F- in more than 52.94% and 23.53% of the groundwater samples exceeded the acceptable non-carcinogenic risk limits for children and adults, respectively. Considering the inherent uncertainty in model parameters, it is anticipated that both children and adults will have a probability exceeding 49.36% and 30.50%, respectively, of being exposed to elevated levels of F ions in groundwater. The utilization of stochastic simulations, in contrast to deterministic methods, enables a more precise depiction of health risks. The outcomes derived from this investigation possess the potential to assist policymakers in formulating strategies aimed at ensuring the provision of secure domestic water supplies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.