Abstract
New free release monitoring post with a large volume 600 L container counting geometry was designed and developed. The monitoring system is able to monitor a material also in standard counting geometry of 200 L drum. Using counting geometry of 600 L rectangular container that is equipped with self-discharger is able to increase the total monitoring capacity. The monitoring system is based on a pair of electrically cooled semiconductor HPGe detectors that are placed into a modifiable vertical or horizontal pair of lead collimators. The monitoring system is integrated with an industrial scale for determination of massic activities of measured materials and in addition by a rotating table in the case of 200 L drums monitoring. Monitoring system is integrated into transportable ISO container with constant environmental conditions that are ensured by air-condition unit. Full-energy peak detection efficiency (FPE) polynomial curves for various densities of measured material were in both cases determined by ISOCS calibration code based on designed counting geometry and delivered ISOCS/LabSOCS detector characterization. Uncertainty analysis of massic activity measurement by container and drum monitoring system in designed counting geometry is introduced below in more detail.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have