Abstract

The unbalance response of a uniform flexible rotor in fluid-film bearings has been analyzed for speeds up to 20 times the lowest rigid-bearing critical speed. Rotor mass and elasticity are distributed uniformly along the length of the rotor. A single radial speed-dependent force is used to represent the rotor unbalance. The rotor is assumed to operate in stable plain cylindrical bearings which are represented by direct and cross-coupled spring and damping forces. The influence of rotor speed, bearing operating eccentricity, relative stiffness of rotor and bearings, and unbalance location along rotor on the performance of the rotor-bearing system has been determined. Results are presented as charts of rotor maximum whirl amplitude and of bearing maximum whirl transmitted force for wide ranges of the foregoing parameters. Mode shapes at critical speeds are also included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.