Abstract

A method is described for calculating the threshold speed of instability and the damped critical speeds of a general flexible rotor in fluid-film journal bearings. It is analogous to the Myklestad-Prohl method for calculating critical speeds and is readily programmed for numerical computation. The rotor model can simulate any practical shaft geometry and support configuration. The bearings are represented by their linearized dynamic properties, also known as the stiffness and damping coefficients of the bearing, and the calculation includes hysteretic internal damping in the shaft and destabilizing aerodynamic forces. To demonstrate the application of the method, results are shown for an industrial, multistage compressor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.