Abstract

In inverse synthetic-aperture radar (ISAR) imaging, it is essential to deal with the Doppler ambiguity of group targets with complex maneuvers in order to avoid the bias of target position towards the actual value. Simultaneously, migration through resolution cell (MTRC) under the Doppler ambiguity is unable to be compensated for as a preprocessing. Traditional ISAR imaging methods for maneuvering targets, however, are undesirable to handle the severe deformation and defocusing in the imaging results induced by the Doppler ambiguity and MTRC. In this paper, we propose a novel and effective ISAR imaging method to improve the imaging quality by removing the Doppler ambiguity and compensating for the MTRC. Specifically, we first model the echo as a multi-component cubic phase signal (m-CPS) and design a high-order instantaneous autocorrelation function–generalized scaled Fourier transform (HIAF–GSCFT) to process the echo. This is to estimate the rotational parameters without MTRC compensation. Then, a maximum weighted contrast algorithm is used to remove the Doppler ambiguity, followed by reconstructing the echo. Compared with the existing method, the proposed method can accurately estimate the rotational parameters under the existing MTRCs and achieves a high-quality ISAR image for group targets, with complex maneuvers without Doppler ambiguity. Experiments of simulated and measured datasets validate its effectiveness and robustness for single target and group targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call