Abstract

Precipitation is a fundamental component of the Earth’s hydrological cycle. Therefore, monitoring precipitation is paramount, as accurate information is needed to prevent natural hydrological disasters, such as floods and droughts. However, measuring precipitation using rain gauges is complicated due to their sparse spatial distribution. Satellite precipitation products (SPPs) are an alternative source of rainfall data. This study aimed to evaluate the performance of PERSIANN-CCS and PDIR-Now SPPs over the Tulijá River Basin (Chiapas, Mexico) using scatter plots, categorical statistics, descriptive statistics, and decomposing total bias. Additionally, bias correction was performed using the quantile mapping (QM) method. QM is a technique used to improve the fit of SPPs with respect to rainfall observations through a transfer function, aiming to reduce systematic errors in SPPs. The results indicate that the PDIR-Now product tends to overestimate rainfall to a large extent, thus showing better performance in detecting rain events. Meanwhile, PERSIANN-CCS underestimates precipitation to a lesser extent. The findings of this study demonstrate that correcting the bias of SPPs improves estimations of rainfall records, thereby reducing the percentage bias and root mean square error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.