Abstract

We have investigated ultrathin silicon oxide film growth by highly concentrated ozone at atmospheric pressure. Oxide film >2 nm was grown on as-received Si(100) even at room temperature. The etching rate by dilute hydrofluoric acid solution of oxide fabricated on Si(100) at 350 °C by this method was almost the same as that of thermally grown oxide so that film density is equivalent to that of thermally grown oxide. The etching rate of this film also shows no dependence on the film depth. This is indicating that the transition layer due to the lattice mismatch of substrate and oxide is limited within a thinner region than that of thermally grown oxide. It also indicates that an oxide film with higher film density can be synthesized on the surface with preoxide film already formed to protect bare substrate surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.