Abstract
This study examines the immunolabelled structures in the mouse retina following incubation with a monoclonal antibody (B16) that recognizes a highly conserved antigen found in retinas from lizards, frogs, fish, birds, mice, rats, rabbits, cats, and monkeys. This paper focuses on observations in the murine retina. The B16 labelling pattern in the retina was compared with that of two synaptic vesicle antigens: SV2 and anti-synaptophysin in the outer plexiform layer were more diffuse and apparently filled the entire presynaptic terminal whereas B16 labelling was more restricted and labelled a discrete structure resembling a semi-ellipse or an arc with the ends pointing to the inner nuclear layer and the middle curve facing the outer nuclear layer (1-2 microns long by < 0.05 micron in width). The structure labelled in the inner plexiform layer resembles a short bar (0.8 micron long by < 0.05 micron in width) that is confined to the inner half the inner plexiform layer. Cryo-ultra microtomy was used to examine the ultrastructural distribution of the labelling, because the B16 epitope is sensitive to fixation and plastic embedding. The tissue was incubated with the B16 antibody and visualized with goat-anti-mouse 10 nm gold particles. In all cases label was found to be confined to the ribbon structure in the photoreceptor terminal. This is consistent with previous evidence linking B16 to an epitope associated with the synaptic ribbon. The labelling is confined to the ribbon structure and does not appear to be associated with synaptic vesicles.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have