Abstract

The aim of the work described here was to evaluate the feasibility of superb microvascular imaging (SMI) and vascular endothelial growth factor receptor 2 (VEGFR2)-targeted microbubble (MBVEGFR2)-based ultrasound molecular imaging (USMI) for visualizing microvessels in cervical cancer. Hela cells were used to establish subcutaneous cervical cancer models. SMI and MBVEGFR2-based USMI were performed, and the results were compared with intratumoral microvessel density (MVD) in four groups based on tumor diameter (<3 mm, 3-5 mm, 5-7 mm and ≥7 mm). The vascularization index (VI, %) was evaluated for SMI, and the normalized intensity difference (NID) for USMI. Tumors with diameters ranging from 3 to 5 mm had the highest VI (39.07 ± 1.58) in SMI, and VI significantly decreased with increasing tumor size (all p values <0.001). The strongest signal intensity was observed in very early tumors (d < 3 mm: 43.80 ± 3.58%) after MBVEGFR2 administration; the NID gradually decreased with increasing diameter of tumors (all p values=0.007). However, no significant differences were observed in NID after administration of non-targeted (control) microbubbles (MBCon) (all p values=0.125). MBVEGFR2-based USMI had the strongest correlation with MVD in displaying microvessels of cervical cancer compared with SMI and MBCon (R2=0.78 vs. R2=0.40 and R2=0.38). These findings validate the superiority and accuracy of MBVEGFR2-based USMI for microvessel imaging and monitoring of angiogenesis in cervical cancer compared with SMI and MBCon. Nonetheless, SMI remains an alternative to microvessel imaging when ultrasonic contrast agent use is contraindicated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.