Abstract

Ultrasonic processing has been applied to create durable electrical contacts between antimony sulfoiodide (SbSI) nanowires and Au microelectrodes on glass substrate. After DC electric field alignment of SbSI nanowires between the microelectrodes, the sample was irradiated with ultrasound using chromium copper alloy sonotrode ended with silicon carbide (SiC) single crystal. The SEM and AFM investigations have showed that the ends of SbSI nanowires have been well compacted and bonded with microelectrodes. Ultrasonic processing has caused 420% increase of DC electric conductance of the junctions between Au microelectrodes and SbSI nanowires. The fabricated structures of SbSI nanowires bonded to Au microelectrodes are useful e.g. as nitrous oxide (N2O) gas sensors. These low power devices can operate at room temperature and do not require heating system for recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.