Abstract

Designing advanced electrode materials that can be reliably cycled at high temperatures and used for assembling advanced energy storage devices remain a major challenge. As a representative of novel wide bandgap semiconductors, silicon carbide (SiC) single crystals have broad prospects in high-temperature energy storage due to their excellent characteristics such as low thermal expansion coefficient, high temperature radiation resistance and stable chemical properties. In this work, an N-type SiC single-crystal material with a high-density porous structure was successfully designed and prepared by using an improved electrochemical anodic oxidation strategy. Besides, the N-type SiC single crystals were used in electrochemical energy storage as an integrated electrode material, exhibiting superior electrochemical performance. In addition, the high-temperature supercapacitor device assembled with ionic liquids has a wide operating temperature range and maintains a capacity of 88.24% after 5000 cycles at 150 °C. The reasons for its high energy storage performance are discussed through electrochemical tests and first-principles calculation methods. This study proves that the application of SiC single crystals in supercapacitor devices has great potential in the field of high-temperature energy storage, providing a reference for the further development of novel semiconductors in the field of energy storage and optoelectronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.