Abstract

Synchrotron radiation is a powerful tool for studying molecular dynamics in small molecules in spite of the absence of natural matching between the X-ray pulse duration and the time scale of nuclear motion. Promoting core level electrons to unoccupied molecular orbitals simultaneously initiates two ultrafast processes, nuclear dynamics on the potential energy surfaces of the highly excited neutral intermediate state of the molecule on the one hand and an ultrafast electronic decay of the intermediate excited state to a cationic final state, characterized by a core hole lifetime. The similar time scales of these processes enable core excited pump-probe-type experiments to be performed with long duration X-ray pulses from a synchrotron source. Recent results obtained at the PLIEADES beamline concerning ultrafast dissociation of core excited states and molecular potential energy curve mapping facilitated by changes in the geometry of the short-lived intermediate core excited state are reviewed. High brightness X-ray beams combined with state-of-the art electron and ion-electron coincidence spectrometers and highly sophisticated theoretical methods are required to conduct these experiments and to achieve a full understanding of the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.