Abstract
We investigate the photo-induced carrier dynamics and spin-lattice interaction in hexagonal YMnO3 film by the temperature-dependent femtosecond pump-probe spectroscopy. The spin-lattice interaction is identified from the slow component of the transient transmittance change with the excitation energies tuned to 1.7 eV and 2.0 eV, which are close to Mn3+ ions d(xz),(yz)→d(z2) and d(x2-y2),(xy)→d(z2) transition, respectively. Temperature dependences of the spin-lattice relaxation parameters demonstrate that the spin-lattice interaction is strongly connected with the d-d transition within Mn3+ ions and enhanced by spin ordering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.