Abstract

Ultrathin van der Waals (vdW) magnets provide a possibility to access magnetic ordering in the two-dimensional (2D) limit, which are expected to be applied in the spintronic devices. Raman spectroscopy is a powerful characterization method to investigate the spin-related properties in 2D vdW magnets, including magnon and spin–lattice interaction, which are hardly accessible by other optical methods. In this paper, the recent progress of various magnetic properties in 2D vdW magnets studied by Raman spectroscopy is reviewed, including the magnetic transition, spin-wave, spin–lattice interaction, symmetry tuning induced by spin ordering, and nonreciprocal magneto-phonon Raman scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.