Abstract

We activated source/drain junctions of complementary metal oxide semiconductor (CMOS) by simply replacing rapid thermal annealing (RTA) in the conventional production flow by non-melt laser spike annealing (LSA). We did not form any additional layers, unlike the conventional laser annealing. The 50-nm gate CMOS devices thus formed had overwhelmingly better Vth roll-offs and larger drain currents compared to those formed by RTA. We found that the LSA-devices without offset spacers had better performance than those with offset spacers, and that the optimization of the overlap length between the gate and source/drain extensions was important due to the minimal lateral diffusion during the sub-millisecond annealing of LSA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.