Abstract

PurposeThe purpose of this paper is to propose a leakage reduction technique which will works for complementary metal oxide semiconductor (CMOS) and fin field effect transistor (FinFET). Power consumption will always remain one of the major concerns for the integrated circuit (IC) designers. Presently, leakage power dominates the total power consumption, which is a severe issue. It is undoubtedly clear that the scaling of CMOS revolutionizes the IC industry. Still, on the contrary, scaling of the size of the transistor has raised leakage power as one of the significant threats to the IC industry. Scaling of the devices leads to the scaling of other device parameters, which includes threshold voltage also. The scaling of threshold voltage leads to an exponential increase in the sub-threshold current. So, many leakage reduction techniques have been proposed by researchers for CMOS from time to time. Even the other nano-scaled devices such as FinFET, carbon nanotube field effect transistor and tunneling field effect transistor, have been introduced, and FinFET is the one which has evolved as the most favorable candidate for replacing CMOS technology.Design/methodology/approachBecause of its minimum leakage and without having limitation of the short channel effects, it gradually started replacing the CMOS. In this paper, the authors have proposed a technique for leakage reduction for circuits using nano-scaled devices such as CMOS and FinFET. They have compared the proposed PMOS FOOTER SLEEP with the existing leakage reduction techniques such as LECTOR technique, LECTOR FOOTER SLEEP technique. The proposed technique has been implemented using CMOS and FinFET devices. This study found that the proposed method reduces the average power, as well as leakage power reduction, for both CMOS and FinFET devices.FindingsThis study found that the proposed method reduces the average power as well as leakage power reduction for both CMOS and FinFET devices. The delay has been calculated for the proposed technique and the existing techniques, which verifies that the proposed technique is suitable for high-speed circuit applications. The authors have implemented higher order gates to verify the performance of the proposed circuit. The proposed method is suitable for deep-submicron CMOS technology and FinFET technology.Originality/valueAll the existing techniques were proposed for either CMOS device or FinFET device, but the authors have implemented all the techniques with both the devices and verified with the proposed technique for CMOS as well as FinFET devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.