Abstract
Development of vegetation communities in areas of Antarctica without permanent ice cover emphasizes the need for effective remote sensing techniques for proper monitoring of local environmental changes. Detection and mapping of vegetation by image classification remains limited in the Antarctic environment due to the complexity of its surface cover, and the spatial heterogeneity and spectral homogeneity of cryptogamic vegetation. As ultra-high resolution aerial images allow a comprehensive analysis of vegetation, this study aims to identify different types of vegetation cover (i.e., algae, mosses, and lichens) in an ice-free area of Hope Bay, on the northern tip of the Antarctic Peninsula. Using the geographic object-based image analysis (GEOBIA) approach, remote sensing data sets are tested in the random forest classifier in order to distinguish vegetation classes within vegetated areas. Because species of algae, mosses, and lichens may have similar spectral characteristics, subclasses are established. The results show that when only the mean values of green, red, and NIR bands are considered, the subclasses have low separability. Variations in accuracy and visual changes are identified according to the set of features used in the classification. Accuracy improves when multilayer information is used. A combination of spectral and morphometric products and by-products provides the best result for the detection and delineation of different types of vegetation, with an overall accuracy of 0.966 and a Kappa coefficient of 0.946. The method allowed for the identification of units primarily composed of algae, mosses, and lichens as well as differences in communities. This study demonstrates that ultra-high spatial resolution data can provide the necessary properties for the classification of vegetation in Maritime Antarctica, even in images obtained by sensors with low spectral resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.