Abstract
Detecting and monitoring underwater organisms is very important for sea aquaculture. The human eye struggles to quickly distinguish between aquatic species due to their variety and dense dispersion. In this paper, a deep learning object detection algorithm based on YOLOv7 is used to design a new network, called Underwater-YOLOv7 (U-YOLOv7), for underwater organism detection. This model satisfies the requirements with regards to both speed and accuracy. First, a network combining CrossConv and an efficient squeeze-excitation module is created. This network increases the extraction of channel information while reducing parameters and enhancing the feature fusion of the network. Second, a lightweight Content-Aware ReAssembly of FEatures (CARAFE) operator is used to obtain more semantic information about underwater images before feature fusion. A 3D attention mechanism is incorporated to improve the anti-interference ability of the model in underwater recognition. Finally, a decoupling head using hybrid convolution is designed to accelerate convergence and improve the accuracy of underwater detection. The results show that the network proposed in this paper obtains an improvement of 3.2% in accuracy, 2.3% in recall, and 2.8% in the mean average precision value and runs at up to 179 fps, far outperforming other advanced networks. Moreover, it has a higher estimation accuracy than the YOLOv7 network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.