Abstract
We consider two-stage risk-averse stochastic optimization problems with a stochastic ordering constraint on the recourse function. Two new characterizations of the increasing convex order relation are provided. They are based on conditional expectations and on integrated quantile functions: a counterpart of the Lorenz function. We propose two decomposition methods to solve the problems and prove their convergence. Our methods exploit the decomposition structure of the risk-neutral two-stage problems and construct successive approximations of the stochastic ordering constraints. Numerical results confirm the efficiency of the methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.